The equivalence problem and canonical forms for quadratic Lagrangians
نویسندگان
چکیده
منابع مشابه
Classical Invariant Theory and the Equivalence Problem for Particle Lagrangians. I. Binary Forms
The problem of equivalence of binary forms under linear changes of variables is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent vartables. The latter problem has a complete solution based on the equivalence method of Cartan. There are two particular rational covariants of any binary f...
متن کاملOn Equivalence and Canonical Forms
Decidability of de nitional equality and conversion of terms into canonical form play a central role in the meta-theory of a type-theoretic logical framework. Most studies of de nitional equality are based on a con uent, strongly-normalizing notion of reduction. Coquand has considered a di erent approach, directly proving the correctness of a practical equivalance algorithm based on the shape o...
متن کاملClassical Invariant Theory and the Equivalence Problem for Particle Lagrangians
The problem of equivalence of binary forms under the general linear group is shown to be a special case of the problem of equivalence of particle Lagrangians under the pseudogroup of transformations of both the independent and dependent variables. The latter problem has a complete solution based on the equivalence method of Cartan. This leads to the determination of a universal function which r...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولApplications of quadratic D-forms to generalized quadratic forms
In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 1988
ISSN: 0196-8858
DOI: 10.1016/0196-8858(88)90015-2